

Learning Objectives

In this chapter you will learn about:

- § Boolean algebra
- § Fundamental concepts and basic laws of Boolean algebra
- § Boolean function and minimization
- § Logic gates
- § Logic circuits and Boolean expressions
- § Combinational circuits and design

S An algebra that deals with binary number system George Boole (1815-1864), an English mathematician, developed it for: Simplifying representation Manipulation of propositional logic

- § In 1938, Claude E. Shannon proposed using Boolean algebra in design of relay switching circuits
- § Provides economical and straightforward approach
- § Used extensively in designing electronic circuits used in computers

Operator Precedence Each operator has a precedence level Higher the operator's precedence level, earlier it is evaluated Expression is scanned from left to right First, expressions enclosed within parentheses are evaluated Then, all complement (NOT) operations are performed Then, all '.' (AND) operations are performed Finally, all '+' (OR) operations are performed

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha
Postulates of Boolean Algebra
Postulate 1:
(a) A = 0, if and only if, A is not equal to 1
(b) A = 1, if and only if, A is not equal to 0
Postulate 2:
(a) $x + 0 = x$
(b) $x \cdot 1 = x$
Postulate 3: Commutative Law
(a) $x + y = y + x$
(b) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
(Continued on next slide)

For example, in the table below, the second row is obtained from the first row and vice versa simply by interchanging '+' with and '0' with '1' Column 1 Column 2 Column 3 Row 1 1 + 1 = 1 1 + 0 = 0 + 1 = 1 0 + 0 = 0 Row 2 0 · 0 = 0 0 · 1 = 1 · 0 = 0 1 · 1 = 1	here is a p DR), and th	recise duality b ne digits 0 and 7	between the operato 1.	ors . (AND) and
Column 1 Column 2 Column 3 Row 1 1 + 1 = 1 1 + 0 = 0 + 1 = 1 0 + 0 = 0 Row 2 0 · 0 = 0 0 · 1 = 1 · 0 = 0 1 · 1 = 1	or example ne first rov nd '0' with	e, in the table b v and vice vers '1'	elow, the second ro sa simply by interch	w is obtained fro anging '+' with
Row 1 $1 + 1 = 1$ $1 + 0 = 0 + 1 = 1$ $0 + 0 = 0$ Row 2 $0 \cdot 0 = 0$ $0 \cdot 1 = 1 \cdot 0 = 0$ $1 \cdot 1 = 1$				
Row 2 $0 \cdot 0 = 0$ $0 \cdot 1 = 1 \cdot 0 = 0$ $1 \cdot 1 = 1$		Column 1	Column 2	Column 3
	Row 1	Column 1 1 + 1 = 1	Column 2 1 + 0 = 0 + 1 = 1	Column 3 0 + 0 = 0

Boolean Algebra and Logic Circuits

Sr. No.	Theorems/ Identities	Dual Theorems/ Identities	Name (if any)
1	x + x = x	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	Idempotent Lav
2	x + 1 = 1	$\mathbf{x} \cdot 0 = 0$	
3	$x + x \cdot y = x$	$\mathbf{x} \cdot \mathbf{x} + \mathbf{y} = \mathbf{x}$	Absorption Law
4	$\overline{\overline{x}} = x$		Involution Law
5	$x \cdot \overline{x} + y = x \cdot y$	$x + \overline{x} \cdot y = x + y$	
6	$\overline{x+y} = \overline{x} \overline{y}$.	$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} +$	De Morgan's Law

Methods of Proving Theorems

The theorems of Boolean algebra may be proved by using one of the following methods:

- 1. By using postulates to show that L.H.S. = R.H.S
- By Perfect Induction or Exhaustive Enumeration method where all possible combinations of variables involved in L.H.S. and R.H.S. are checked to yield identical results
- By the *Principle of Duality* where the dual of an already proved theorem is derived from the proof of its corresponding pair

	Computer Fundamentals: Pradeep i	C Sinna & Priti Sinna
Proving a Theorem	by Using Postulate	S THE R
(Evanala)		
(Evanible)		
Theorem:		
$x + x \cdot y = x$		
Broof		
F1001.		
L.H.S.		
$= \mathbf{x} + \mathbf{x} \cdot \mathbf{y}$		
$= \mathbf{x} \cdot 1 + \mathbf{x} \cdot \mathbf{y}$	by postulate 2(b)	
$= \mathbf{x} \cdot (1 + \mathbf{y})^{T}$	by postulate 5(a)	
$= \mathbf{x} \cdot (\mathbf{y} + 1)$	by postulate 3(a)	
$= \mathbf{x} \cdot 1$	by theorem 2(a)	
= x	by postulate 2(b)	
= R H S		
		Research Contractory of Contractory
		and the second second
Ref. Page 64 Chapter 6: Bo	olean Algebra and Logic Circuits	Slide 12/78

Pro (Ex	ving a The ample)	comportern by I	erieci Ine	Pradeep K. Sinha &	Priti Sin
TI	neorem:				
	$x + x \cdot y$	= x			
	Į		=		
	x	У	х×у	$\mathbf{x} + \mathbf{x} \times \mathbf{y}$	
	0	0	0	0	
	0	1	0	0	
	1	0	0	1	
	1	1	1	1	
Rof Page	64 Cha	nter 4: Roolean Ale	labra and Logic Cir		12/78

х	Y	z	w
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Minimization of Boolean Functions Minimization of Boolean functions deals with Reduction in number of literals Reduction in number of terms Minimization is achieved through manipulating expression to obtain equal and simpler expression(s) (having fewer literals and/or terms)

	Computer Fundamentals: Pradeep K. Sinha & Priti Sin					
M	inimization of Boolean Functions					
						-
(Continued	from previous slide)					
	х	У	z	F ₁	F ₂	
	0	0	0	0	0	
	0	0	1	1	1	
	0	1	0	0	0	
	0	1	1	1	1	
	1	0	0	1	1	
	1	0	1	1	1	
	1	1	0	0	0	
	1	1	1	0	0	
	Both F ₁ and	d F ₂ produc	e the same	result		
		1.0		1	- Annual	
Ref. P	age 68	Chapter 6: Bo	olean Algebra a	nd Logic Circuits	s Slid	e 22/78

Complementing a Boolean Function (Example)

$$F_{\cdot} = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z$$

To obtain $\overline{F_{\cdot}}$, we first interchange the OR and the AND
operators giving
 $(\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$
Now we complement each literal giving
 $\overline{F_{\cdot}} = (x + \overline{y} + z) \cdot (x + y + \overline{z})$

	Computer Fundamentals: Pradeep K. Sinha & Priti Sir							Binua
N	lin	ter	ms	and Maxie	rms for t	hree Var	ables	10000
							-	
	V	ariak	les	Minter	ms	Maxte	erms	
	x	у	z	Term	Designation	Term	Designation	
	0	0	0	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} \cdot \overline{\mathbf{z}}$	m٥	x + y + z	M٥	
	0	0	1	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} \cdot \mathbf{z}$	m1	$x + y + \overline{z}$	M 1	
	0	1	0	$\overline{\mathbf{x}} \cdot \mathbf{y} \cdot \overline{\mathbf{z}}$	m 2	$x + \overline{y} + z$	M 2	
	0	1	1	$\overline{\mathbf{x}} \cdot \mathbf{y} \cdot \mathbf{z}$	m 3	$x + \overline{y} + \overline{z}$	Mз	
	1	0	0	$x \cdot \overline{y} \cdot \overline{z}$	m₄	$\frac{1}{x}$ + y + z	M₄	
	1	0	1	$\mathbf{x} \cdot \mathbf{\overline{y}} \cdot \mathbf{z}$	m s	$\overline{x} + y + \overline{z}$	Мs	
	1	1	0	$\mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z}$	m 6	$\overline{x} + \overline{y} + z$	M 6	
	1	1	1	$x\cdoty\cdotz$	m,	$\overline{x} + \overline{y} + \overline{z}$	M ₇	
N	ote t	that ea	ach mi	nterm is the comple	ment of its corre	esponding maxter	m and vice-ver	sa
							- Aldered	-
				Statement and		11	A STREET	MY CH
Ref. I	Page	71		Chapter 6: Boolea	n Algebra and L	ogic Circuits	Slide 2	7/78

	х	У	z	F ₁	
	0	0	0	0	
	0	0	1	1	
	0	1	0	0	
	0	1	1	0	
	1	0	0	1	
	1	0	1	0	
	1	1	0	0	
	1	1	1	1	
Tho f		ombinations	of the verieb	los produco o 1	

Computer Fundamentality Reading V. Status & Part Status
Expressing a Function in its
Sum-of-Products Form (Example)
(Continued from protocos side...)
§ Their corresponding minterms are:

$$\overline{x} \cdot \overline{y} \cdot \overline{z}, \quad x \cdot \overline{y} \cdot \overline{z}, \text{ and } x \cdot y \cdot \overline{z}$$

§ Taking the OR of these minterms, we get
 $F_1 = \overline{x} \cdot \overline{y} \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot \overline{z} = m_1 + m_4 + m_7$
 $F_1(x \cdot y \cdot \overline{z}) = \sum (1, 4, 7)$
80. 2007 72 Computer & Boylean Analysis and Lago Grants Status 2009, 31/78

Chapter 6: Boolean Algebra

$$\begin{array}{c} \textbf{Description} \\ \textbf{Description} \\$$

		Com	outer Fundamenta	ils: Pradeep K. Sin	ha & Priti Sinh
Expre	ssing a l	Function	in its		
Produ	ct-of-Su	ims Form	1	in all the second	
	х	у	z	F ₁	
	0	0	0	0	
	0	0	1	1	
	0	1	0	0	
	0	1	1	0	
	1	0	0	1	
	1	0	1	0	
	1	1	0	0	
	1	1	1	1	
8 т	he following	15 combinati	ons of variable	es produce a 0	
3 .	000	010 01		and 110	
	000,	010, 0	11, 101,	anu 110	
				(Continue	ed on next slide)
			The second second	~	Cold Street, or other
Ref. Page 73	Char	ter 6: Boolean A	loebra and Logic (Dircuits	Slide 34/78

Computer Fundamentality Readings X, Sinke 4 PMF Sinker
Expressing a Function in its
Product-of-Sums Form
Contract for previous site.
(x+y+z), (x+
$$\overline{y}$$
+z), (x+ \overline{y} + \overline{z}),
(\overline{x} +y+ \overline{z}) and (\overline{x} + \overline{y} +z)
(\overline{x} +y+ \overline{z}) and (\overline{x} + \overline{y} +z)
S Taking the AND of these maxterms, we get:
F₁ = (x+y+z) · (x+ \overline{y} +z) · (x+ \overline{y} + \overline{z}) · (\overline{x} +y+ \overline{z}) ·
(\overline{x} + \overline{y} +z)=M₀·M₂·M₃·M₅·M₆
F₁ (x,y,z) = Π(0,2,3,5,6)
Not. Mat. A textuar Advances and Logic Clearly Sold 14/28

Conversion Between Canonical Forms (Sum-of-
Products and Product-of-Sums)
To convert from one canonical form to another,
interchange the symbol and list those numbers missing
from the original form.
Example:
$$F(x,y,z) = \Pi(0,2,4,5) = \Sigma(1,3,6,7)$$
$$F(x,y,z) = \Pi(1,4,7) = \Sigma(0,2,3,5,6)$$

		Computer Fu	ndamentals: Pradeep K	C Sinha & Priti Sinha
Exclu	sive-O	R Functi	on (Truin	Table)
(Continued from previous	s slide)			
	In	puts	Output	
	A	В	C =A⊕B	
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	0	
	-	and the second second	~	and the second
Ref. Page 92	Chapter	6: Boolean Algebra a	nd Logic Circuits	Slide 68/78

In	puts	Output	
А	В	C = A € B	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Computer Fundamentalise Readcop & Stime & First Steps in Designing Combinational Circuits

- 1. State the given problem completely and exactly
- 2. Interpret the problem and determine the available input variables and required output variables
- $\ensuremath{\textbf{3.}}$ Assign a letter symbol to each input and output variables
- 4. Design the truth table that defines the required relations between inputs and outputs
- 5. Obtain the simplified Boolean function for each output
- 6. Draw the logic circuit diagram to implement the Boolean function

	Computer Fundamentals: Pradeep K. Sinha & Priti Sinha									
Designing a Combinational Circuit										
Example 1 – Half-Adder Design										
	Inputs		Out							
	А	В	С	S						
	0	0	0	0						
	0	1	0	1						
	1	0	0	1						
	1	1	1	0						
S=Ā·B+A·B										
Boolean functions for the two outputs.										
		14.4	-	Contraction of the second	and the					
					GAN CES					

Computer Fundamentalse Readeep X. Sinna & Prit Sinna Designing a Combinational Circuit Example 2 – Full-Adder Design									
	Inputs			Outputs					
	А	В	D	С	S				
	0	0	0	0	0				
	0	0	1	0	1				
	0	1	0	0	1				
	0	1	1	1	0				
	1	0	0	0	1				
	1	0	1	1	0				
	1	1	0	1	0				
	1	1	1	1	1				
Truth table for a full adder (Continued on next slide)									
Def Page 94 Chapter & Boolean Alaphra and Logic Circuits Slide 74/79									

